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Abstract
Ultrasound sensors play an important role in biomedical imaging, industrial nondestructive inspection, etc. Traditional
ultrasound sensors that use piezoelectric transducers face limitations in sensitivity and spatial resolution when
miniaturized, with typical sizes at the millimeter to centimeter scale. To overcome these challenges, optical ultrasound
sensors have emerged as a promising alternative, offering both high sensitivity and spatial resolution. In particular,
ultrasound sensors utilizing high-quality factor (Q) optical microcavities have achieved unprecedented performance in
terms of sensitivity and bandwidth, while also enabling mass production on silicon chips. In this review, we focus on
recent advances in ultrasound sensing applications using three types of optical microcavities: Fabry-Perot cavities, π-
phase-shifted Bragg gratings, and whispering gallery mode microcavities. We provide an overview of the ultrasound
sensing mechanisms employed by these microcavities and discuss the key parameters for optimizing ultrasound
sensors. Furthermore, we survey recent advances in ultrasound sensing using these microcavity-based approaches,
highlighting their applications in diverse detection scenarios, such as photoacoustic imaging, ranging, and particle
detection. The goal of this review is to provide a comprehensive understanding of the latest advances in ultrasound
sensing with optical microcavities and their potential for future development in high-performance ultrasound imaging
and sensing technologies.

Introduction
Ultrasound sensing has found widespread applications

in various fields, including biomedical imaging1,2, indus-
trial non-destructive inspection, and transportation sys-
tems. In biomedical imaging, ultrasound stands out for its
numerous advantages, including its affordability, ability to
provide real-time imaging, and nonionizing radiation. As
a result, it has become a commonly used tool for early
disease diagnosis3,4. Similarly, industries rely on ultra-
sound technology for applications like flow and level
measurement, process control, and non-destructive test-
ing of materials5. Furthermore, ultrasound-based systems
play a critical role in transportation, facilitating tasks such
as reversing radar, object recognition and detection, and
automatic obstacle avoidance6. All these diverse functions
can only be achieved with suitable ultrasound sensors.
Figure 1 shows the examples of ultrasound sensor
applications.

Piezoelectric transducers have been widely used in
industrial and clinical7 applications for ultrasound sen-
sing, and have become the predominant ultrasound sen-
sors over the past few decades. These transducers convert
ultrasound signals into electric signals by utilizing the
piezoelectric effect and measure the electric potential
difference resulting from the deformation of the piezo-
electric material. However, these transducers have lim-
itations in terms of sensitivity, bandwidth, and
miniaturization. Achieving higher frequencies is challen-
ging, and as their size decrease, the sensitivity drops
rapidly, resulting in sensor sizes typically in the millimeter
to centimeter range. To overcome these limitations,
recent advancements in micromachining technology have
introduced micro-electro-mechanical systems (MEMS)
ultrasound sensors, such as capacitive micromachined
ultrasound transducers (CMUTs) and piezoelectric
micromachined ultrasound transducers (PMUTs), which
offer increased response bandwidth and sensitivity, as well
as the potential for integration and miniaturization8. The
CMUT structure typically comprises a parallel-plate
capacitor, with one plate fixed and the other supported
by a flexible membrane9. An ultrasonic wave causes the
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membrane to vibrate and leads to a change in the capa-
citance. These structures generally exhibit significant
electromechanical coupling coefficients. Nonetheless, in
practical applications, CMUTs often require a high bias-
ing voltage, resulting in substantial power consumption
and limited biocompatibility. On the other hand, PMUT
harnesses the piezoelectric effect for ultrasound sensing,
offering a low-cost technology and requiring low
power10–12. However, its performance is notably influ-
enced by the characteristics of the piezoelectric material
and the residual stress present in the transducer. Both
CMUTs and PMUTs are susceptible to electromagnetic
interference due to material properties and sensing
mechanism, and their opaque sensor structures present
challenges for multimodal imaging.
In recent years, optical ultrasound sensors have

emerged as a promising direction in ultrasound sensing,
offering enhanced sensitivity13–15 and integration cap-
ability. These sensors have undergone continuous min-
iaturization, transitioning from free-space optical paths to
optical fiber paths and now to on-chip integration pro-
cesses. Optical ultrasound sensors can be classified as
resonance-based or non-resonant-based, depending on
their measurement approach16. Non-resonant-based
methods, such as Michelson interferometers17, utilize
interference to measure ultrasound by monitoring the
interferometric phase change resulting from the change of
optical path caused by the ultrasound. Early Michelson
interferometric ultrasound sensing is available in free-
space systems. To enhance the portability and practicality,
optical fibers18–20 and waveguide structures21,22 have been
widely employed. Moreover, optical microcavities, such as

Fabry-Perot (F-P) cavities, π-phase-shifted Bragg gratings
(π-BGs), and whispering gallery mode (WGM) micro-
cavities, have been utilized to further improve ultrasound
sensitivity23, with the schematics along with their reso-
nance conditions illustrated in Fig. 2a–c. These optical
microcavities undergo changes in their refractive index,
radius, or waveguide-cavity coupling distance in response
to the ultrasound. By monitoring the resulting shift in
resonance frequencies or changes in coupling strength,
ultrasound can be detected using the dispersive (Fig. 2d–f)
or dissipative (Fig. 2g–i) sensing mechanisms, respec-
tively. The high-Q optical resonances of microcavities
enable ultrahigh measurement precision, offering unpre-
cedented ultrasound sensitivity. Additionally, the mass
production capability of microcavities on silicon chips can
reduce costs, while their microscale sizes allow for high
spatial resolution, particularly in applications like photo-
acoustic tomography. In the past few decades, various
ultrasound sensing applications have demonstrated the
potential of optical microcavities.
In this review, we provide an overview of ultrasound

sensing using optical microcavities, including the sensing
mechanisms and key parameters relevant to ultrasound
sensors. Understanding these sensing principles is crucial
for comparing the performance of different sensors. We
then highlight recent influential research in this field,
focusing on the three types of microcavities: F-P cavities,
π-BGs, and WGM microcavities. We summarize their key
parameters, including bandwidth and sensitivity, and
compare their respective advantages and disadvantages.
Furthermore, we examine the performance of these
microcavity-based sensors in practical applications.
Finally, this review presents a comprehensive comparison
of ultrasound sensors based on optical microcavities and
provides insights into their future development.

Ultrasound sensing mechanism
The F-P cavity, also known as the F-P interferometer or

etalon, is the most commonly used microcavity. It consists
of two parallel reflecting surfaces, or thin mirrors, that can
confine light in between. The cavity is named after
Charles Fabry and Alfred Perot, who created the instru-
ment in 1899. The resonance condition occurs when the
optical path in one roundtrip equals an integer number of
the light wavelength: 2nL=mλ, as shown in Fig. 2a. F-P
cavities are widely utilized in lasers, telecommunications,
optical instruments, spectroscopy, astronomy, etc., due to
their high-Q factors and well-established fabrication
techniques. They have also found significant applications
in ultrasound sensing, as ultrasound can alter the cavity
length and shift the optical resonance frequency, which
can be optically detected. F-P cavities have a simple
structure and demonstrate excellent sensitivity when
using a thin film on one side of the cavity. F-P cavities
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located at the fiber end can serve as probe-type ultra-
sound receivers, and clustering multiple optical fibers can
enable array sensing. However, F-P cavities generally have
a larger volume compared to other optical cavities. More
recently, ultrasound sensors based on optical fibers con-
taining fiber Bragg gratings (FBGs) have been developed,
offering advantages of cost-effectiveness and remote-
sensing capabilities. Among these FBGs, π-phase-shifted
FBGs are particularly intriguing to researchers. These

FBGs have a notch in their transmission spectrum that
arises from a π-phase discontinuity in the center of the
grating. By introducing a π-phase shift into a refractive
index modulation of the FBG during its fabrication, a
narrow bandpass resonance of a few picometers appears
within the middle of the reflection lobe. This narrow
linewidth enables highly sensitive ultrasonic detection,
addressing the sensitivity limitations of standard FBGs.
The resonance condition for π-phase-shifted FBGs is
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expressed as λB= 2neffΛ, where Λ is the grating period of
the FBG, as shown in Fig. 2b. In recent years, Bragg
gratings on chip-integrated waveguides have also been
developed and applied in ultrasound sensing. π-phase-
shifted Bragg gratings (π-BGs) feature a small sensing area
and can be integrated on-chip or on optical fibers seam-
lessly. Nevertheless, it is worth noting that their current
sensitivity levels are relatively lower. In addition to the F-P
cavities and π-BGs, ultrasound sensors based on WGM
microcavities have also gained increasing interest, owing
to their advantages of high optical Q factors and chip-
integration capabilities. These WGM microcavities con-
fine light through continuous total internal reflection
along the inner surface of a closed circular dielectric
structure. The resonance condition for WGM micro-
cavities is satisfied when the optical path equals an integer
number of the wavelength: 2πnR=mλ, where n is the
effective index, R is the radius of the cavity, and m is an
integer number, as shown in Fig. 2c. WGM microcavities
possess high optical Q factors and small modal volumes,
as well as other advantages such as adaptability to various
material systems and geometric shapes. These micro-
cavities can achieve high sensitivities and large band-
widths for ultrasound detection in different systems,
making them versatile and suitable for various applica-
tions. However, practical applications of WGM micro-
cavities have been hampered by the complexity of their
fabrication process and the challenges associated with
integration.
When the optical field is resonant with the cavity mode,

a Lorentzian-shaped resonance dip appears in the trans-
mission spectrum. The linewidth of the resonance
depends on the optical quality (Q) factor of the cavity
mode and is determined by the optical losses of the cavity.
A smaller optical loss results in a higher optical Q factor
(denoted with Qo) and a narrower resonance linewidth
δω, which can be quantified by δω= ω/Qo, with ω being
the resonance angular frequency. The optical Qo factor
can also be expressed as Qo= ω/κ, with κ being the optical
decay rate of the cavity mode. A higher Qo is desirable for
sensing, as it provides a higher phase measurement pre-
cision. The depth of the resonance dip is determined by
the coupling strength between the waveguide and the
cavity. In the presence of an ultrasonic wave, the ultra-
sound pressure can induce changes in the optical char-
acteristic through two distinct mechanisms. Firstly, it can
induce an optical resonance shift by altering the refractive
index through the photoelastic effect or changing the
cavity radius by exerting a force on the cavity. Alter-
natively, it can modify the coupling strength by changing
the gap between the coupling waveguide and the cavity.
Both the optical resonance shift and the change in the
coupling strength will induce a variation in the intracavity
optical field, which can be converted into an electric signal

using a photodetector. In the case of relatively small
acoustic signals, the mode changes caused by the acoustic
pressure can be regarded as linear changes. Consequently,
the frequency of the detected electric signal is the same as
the ultrasound frequency, and the signal amplitude is
proportional to the ultrasound pressure. The temporal
signal of the acoustic wave can be captured using an
oscilloscope, and applying the Fourier transform or
employing a spectrum analyzer enables the acquisition of
the frequency-domain signal. The sensing mechanisms
that rely on the optical resonance shift and change in the
coupling strength are referred to as dispersive and dis-
sipative sensing mechanisms, respectively.

Dispersive sensing mechanism
The dispersive sensing mechanism is one of the most

commonly used sensing mechanisms for microcavity
ultrasound sensing24. The principle of this mechanism is
illustrated in Fig. 2d–f. When ultrasound is incident on a
microcavity, the resonance frequency shifts due to the
refractive index change caused by the photoelastic effect
and cavity length variation induced by stress (Fig. 2d).
This translates into a periodic modulation of the intra-
cavity optical field at the ultrasound frequency. In the
measurement, the frequency of the laser is usually locked
to the side of the optical resonance to measure the
amplitude modulation induced by the ultrasonic wave
(Fig. 2e). The optical readout response is proportional to
the slope of the transmission, as shown in the response as
a function of the optical frequency detuning in Fig. 2f. As
a result, having a higher optical Q factor is desirable to
achieve higher readout sensitivity. The maximum
response is obtained when the frequency detuning
δω ¼ ffiffiffi

3
p

κ=6. The dispersive sensing mechanism can also
be read out by locking the laser frequency at the center of
the optical resonance and measuring the phase modula-
tion. An interferometer is often used to measure the phase
modulation25. The laser phase noise can be reduced by
balancing the two interferometric arms.

Dissipative sensing mechanism
Unlike the dispersive sensing mechanism that measures

mode shift, the dissipative sensing mechanism relies on
the change in the optical linewidth to read out the
ultrasound, as shown in Fig. 2g–i. Ultrasound changes the
total decay rate κ by varying the rate of optical coupling
into the cavity κ1 or the intrinsic decay rate of the cavity κ0
(Fig. 2g). The variation in the decay rate leads to changes
in the coupling depth and thus the output light intensity,
as well as the linewidth of the optical mode. The optical
intensity change modulated by ultrasound can be read out
by locking the incident light frequency on the optical
resonance (Fig. 2h). The response decreases when the
detuning increases and reaches the maximum when the
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detuning δω= 0 (Fig. 2i). The advantage of the dissipative
sensing mechanism is that some optical microcavities are
not very susceptible to cavity length changes, and measuring
the coupling rate changes between the cavity and the cou-
pling waveguide can improve the response to ultrasound.
For instance, a recent study by Meng et al.26 found that the
perimeter of the microsphere does not change significantly
under ultrasound. Instead, due to the large optical field
gradient between the fiber taper and the microsphere,
measuring the intensity change through the dissipative
coupling sensing mechanism can effectively enhance the
sensitivity.

Key parameters of ultrasound sensors
There are various parameters to evaluate the perfor-

mance of ultrasound sensors, such as sensitivity, respon-
siveness, center frequency, bandwidth, spatial sensing
capability, stability, size, etc. Different aspects are
emphasized for comparison based on various application
requirements. In the following, we will focus on three key
parameters of ultrasound sensors: sensitivity, working
frequency and bandwidth, and spatial sensing capability.
These parameters are more commonly used in ultrasound
sensing applications.

Sensitivity
Sensitivity is a critical parameter for ultrasound sensors

as it determines their ability to detect weak ultrasonic
waves. It is defined as the smallest detectable ultrasound
pressure. In the case of optical ultrasound sensors that use
light intensity to read out the signal, sensitivity is typically
characterized by the noise equivalent pressure (NEP),
which represents the amplitude of ultrasound pressure
that can be detected by the sensor at a signal-to-noise
ratio (SNR) of 1. By calibrating the system noise to the
effective pressure incident at the sensor surface, NEP
allows for accurate sensitivity characterization. It is
important to consider the bandwidth of the incident
sound pressure, as NEP (measured in Pascal) denotes the
amplitude of the sound pressure within a specific band-
width. To evaluate the sensitivity of ultrasound sensors
within a unit bandwidth, the noise equivalent pressure
density (NEPD) can be utilized27. It is measured in
Pa Hz−1/2, and represents the NEP for a bandwidth of
1 Hz, corresponding to a measurement time of one sec-
ond. Increasing the measurement time reduces the noise
floor and therefore improves the NEP. It should be noted
that NEP and NEPD are sometimes used interchangeably
without explicit differentiation in some articles.
To enhance the ultrasound sensitivity of optical

microcavities, mechanical resonances can also be
employed, which can further enhance the response to
external stimuli by a factor of Qm, with Qm denoting the
mechanical quality factor. The strong optomechanical

coupling enables optical readout of the mechanical dis-
placement. In the past few decades, optomechanical sys-
tems have been extensively applied for sensing of multiple
physical quantities28–30, such as displacement31–33,
force34,35, mass36,37, acceleration38, magnetic field39,40,
ultrasound41,42, etc. In the following, we use a cavity
optomechanical system to interpret the sensitivity.
The sensitivity of ultrasound sensors is ultimately

determined by the noise level of the system. In cavity
optomechanical sensors, the main sources of noise include
thermal noise, which is related to the environment tem-
perature, and detection noise from the probe laser. Ther-
mal noise arises from the environmental medium damping
and intrinsic structural loss, and its displacement noise
power spectral density (PSD) is expressed as43

Sthermal
xx ðωÞ ¼ jχðωÞj2Sthermal

FF ¼ 2γkBT

m ω2
m � ω2

� �2 þ ω2γ2
h �i

ð1Þ

Here, χ(ω) = 1
mðω2

m�ω2�iγωÞ represents the mechanical
susceptibility, quantifying the displacement of the
mechanical resonator in response to an external force in
the frequency domain, for a simple case of a single
mechanical resonance with an angular frequency of ωm.
The parameters m and γ represent the effective mass and
damping rate of the mechanical resonator, respectively.
Decreasing γ (increasing mechanical quality factor Qm)
can enhance the response to near-resonant forces. The
detection noise includes classical technical noise (phase
noise and intensity noise) and quantum shot noise. The
technical noise can be significantly suppressed by using
homodyne or heterodyne detection schemes. Conse-
quently, we only consider shot noise here29. To better
visualize the noise spectrum and sensitivity as a function
of the frequency, a microdisk optomechanical sensor is
utilized as an example. The microdisk has a radius of
100 μm and a thickness of 2 μm, with a simulated
mechanical resonance frequency of 1.3 MHz. The red
curve in Fig. 3a shows the thermal noise PSD near the
mechanical resonance frequency, with the inset displaying
the simulated displacement distribution of the first-order
flapping mode. The temperature T is 300 K and the Qm is
100. It can be observed that there is a thermal noise peak
near the mechanical mode due to resonance enhance-
ment, with the response at the mechanical resonance
being enhanced by a factor of 100. The displacement PSD
of the shot noise is expressed as44

Sshotxx ðωÞ ¼ κ

16ηNG2 1þ 4
ω2

κ2

� �
ð2Þ

In this equation, N ¼ QoP=_ω
2
L is the intracavity photon

number, where P is the incident optical power and ωL is
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optical resonance frequency. κ=ωL/Qo is the optical
power decay rate, and η stands for the optical detection
efficiency. G ¼ dω

dx represents the optomechanical coupling
coefficient, quantifying the optical resonance frequency
shift for a mechanical displacement x. The shot noise PSD
is depicted by the green curve in Fig. 3a, where the optical
power is P= 100 μW and optical Q factor Qo= 106. The
shot noise remains constant within the frequency range
and only increases significantly when the frequency is
comparable to κ/2π. The total noise, which consists of the
sum of thermal noise and shot noise, is plotted in the black
curve in Fig. 3a, indicating that the total noise is dominated
by thermal noise near mechanical resonance frequency and
by shot noise when it is far from the mechanical resonance.

The sensitivity (or NEPD) can be obtained from the noise
PSD, which is calculated using the following equation:

NEPD ¼ 1
rζA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sshotxx

χj j2 þ Sthermal
FF

s
¼ 1

rζA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ

16ηNG2jχj2 ½1þ 4
ω

κ

� �2
� þ 2mγkBT

s

ð3Þ

Here, r represents the ratio of the pressure difference
between the upper and lower surfaces of the sensor to the

peak pressure at the antinode of the incident ultrasonic
wave, ζ is the spatial overlap between the incident
ultrasound and the mechanical displacement profile of
the sensor, A is the sensor area. The sensitivity as a
function of the frequency is shown in the blue curve in
Fig. 3a. It can be seen that the sensitivity reaches a
minimum at the mechanical resonance frequency where
thermal noise dominates and is degraded in the shot-
noise-limited regime. This is due to the fact that the
mechanical resonance not only enhances thermal noise
but also enhances response. However, shot noise is not
amplified by the mechanical resonance. Therefore
mechanical resonance helps to increase the SNR. The
thermal-noise-limited sensitivity represents the funda-
mental limit for ultrasound sensors. Consequently, reach-
ing this limit is critical to achieving high sensitivity for
ultrasound sensors.

The thermal-noise-dominant regime can be reached by
optimizing the parameters to reduce shot noise or increase
thermal noise. Equation (3) shows that increasing the probe
power P, optical quality factor Qo, or the optomechanical
coupling coefficient G, can reduce the contribution of shot
noise. Figure 3b, c show the sensitivity spectra for various
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incident powers when the Qo is fixed at 106, and for dif-
ferent Qo when the incident power is fixed at 100 μW,
respectively. Both incident power and Qo have no effect on
the thermal noise term, so the minimum NEPD (sensitivity
at the mechanical resonance frequency) achievable by the
system remains constant regardless of variations in these
two parameters. Both Fig. 3b and 3c demonstrate that as P
and Qo increase, the shot noise decreases, and the fre-
quency range of the thermal noise dominant regime
increases, thus extending the detection bandwidth. It is
evident that the sensitivity exhibits a flat spectrum within a
frequency range of approximately ωm, given an appropriate
selection of P and Qo. Moreover, as Sshotxx / 1

Q2
o
and Sshotxx / 1

P,
increasing the Qo leads to a more effective reduction of the
shot noise than increasing the incident power.
Another way to achieve the thermal-noise-dominant

sensitivity is by improving the mechanical quality factor
Qm. Increasing Qm can improve the thermal-noise-
dominant sensitivity, as shown in Fig. 3d. However,
increasing Qm will also lead to a narrower linewidth of the
mechanical peak and therefore the thermal-noise-
dominated frequency range (i.e., the bandwidth). Due to
the high Qo= 106, the thermal-noise-dominated regime
can still be reached even when the Qm= 1. Given this
scenario, a microcavity with a lower Qm can realize
broadband detection, although at the expense of com-
promised sensitivity. On the other hand, a microcavity
with higher Qm can achieve better sensitivity but with a
limited bandwidth. These findings highlight that both
optical resonance and mechanical resonance can enhance
sensitivity from different perspectives. The dual resonance
in the cavity optomechanical system enables extremely
high sensitivity and has found widespread applications in
the measurement of various physical quantities29.
Equation (3) also suggests that the sensitivity improves

with a larger sensor area A. However, the effect of the
pressure difference needs to be taken into account. Figure 3e
displays the simulated resonance frequencies of the first-
order flapping mode of the microdisk as a function of the
disk radius, considering thicknesses of both 1 μm (blue
triangles) and 2 μm (red rectangles), respectively. It is
observed that the resonance frequency decreases with
increasing radius and decreasing thickness. To evaluate
the impact of these parameters on sensitivity, we obtain
the spatial overlap and pressure difference through
simulation, and calculate the corresponding sensitivities
for microdisks with different radii and thicknesses of 1 μm
and 2 μm, as shown in Fig. 3f. According to Eq. (3),
increasing the radius and decreasing the thickness
improves the sensitivity due to increased sensor area or
reduced mass. However, the decrease in resonance fre-
quency hinders the sensitivity improvement due to the
reduced pressure difference. As a result, considering the
combined effect of these two factors, the sensitivity

initially improves and then degrades with increasing
radius. Moreover, the sensitivities of 2 μm-thick micro-
disks are generally better than those of 1 μm-thick
microdisks at most radii.

Working frequency and bandwidth
Ultrasound is a type of acoustic wave that operates

above 20 kHz and has a wide range of frequencies. The
working frequency and bandwidth of ultrasound sensors
are crucial factors as they determine the applications for
which the ultrasound can be used. In the field of ultra-
sound imaging, higher frequencies are preferred as they
provide better spatial resolution. To achieve micrometer-
level spatial resolution, ultrasound sensors need to have a
center frequency and bandwidth in the MHz range9.
However, it is important to seek a balance between high
frequencies and the loss of ultrasound waves in the
medium. As the frequency increases, so does the
absorption and scattering loss in the medium. The
absorption loss is directly proportional to the frequency,
while the scattering loss is proportional to the frequency
squared6. In the case of ultrasonic waves in the air, the
scattering loss dominates, with an attenuation of
approximately 160 dB/m for a 1MHz ultrasound. There-
fore, it is necessary to consider both the penetration depth
and image resolution when selecting the frequency of
ultrasound waves. In other applications, such as thermo-
acoustic and photoacoustic reconstruction45, the detec-
tion bandwidth plays a crucial role in determining the
axial resolution (RA), which can be described by the
equation RA= 0.88vA/BW, where vA represents the speed
of sound, and BW denotes the bandwidth of the detector.
Besides, the lateral resolution of photoacoustic imaging
depends on the beam waists of the optical or acoustic
focal points46,47. A wider bandwidth allows for more
detailed detection in three dimensions. Additionally, in
applications like ultrasonic ranging where the time-of-
flight (TOF) method is used to determine the position by
reflecting sound waves, a larger bandwidth leads to a
narrower pulse width in the time domain, resulting in
higher precision. In specific applications like sonar and
underwater communications, kHz frequency acoustic
sensors are required to minimize acoustic loss and extend
the detection and communication ranges.
The bandwidths of traditional piezoelectric transducers

typically range in the megahertz level, with center fre-
quencies between 1MHz and 100MHz and fractional
bandwidths (the ratio between the− 3 dB or− 6 dB
bandwidth and the center frequency) of 60–80%. How-
ever, capacitive or piezoelectric micromachined ultra-
sound transducers can achieve a fractional bandwidth
over 100%, albeit with compromised center frequency in
the few megahertz range48. A bandwidth of up to several
hundred megahertz can be achieved using optical
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microcavity ultrasound sensors49. For optical resonance-
based ultrasound sensors, the intracavity photon lifetime
is one of the factors limiting the bandwidth. A lower
optical Q factor corresponds to a shorter photon lifetime
and a broader bandwidth. Consequently, there is a trade-
off between sensitivity and bandwidth, regarding the
choice of optical Q factor. Mechanical resonances can
enhance the cavity response, and the bandwidth is related
to the range dominated by thermal noise. In the unre-
solved sideband regime (κ > ωm), it is possible to increase
the thermal noise dominant frequency range, thereby
improving the bandwidth by enhancing the optical Q
factor or increasing the incident optical power. In con-
trast, for microcavity ultrasound sensors without
mechanical resonances, such as microrings49 and F-P
cavity sensors50, their response bandwidths depend
mainly on the thickness of the microcavity and substrate
as well as the acoustic impedance.

Spatial sensing capability
The spatial sensing capability of ultrasound sensors

includes the ability to detect ultrasonic waves from dif-
ferent directions (known as the acceptance angle) and at
different distances. The shape and size of the sensor play a
significant role in these capabilities. Typically, ultrasound
sensors are most sensitive to axial ultrasound, and their
sensitivity decreases as the incidence angle. Piezoelectric
transducers, commonly used in ultrasound sensors, have a
directional nature with acceptance angles usually
below ± 20∘51. Acoustic lenses may be required to increase
their acceptance angles. In imaging applications, a wider
acceptance angle is desirable to capture more realistic
spatial information, making optical ultrasound sensors
more advantageous. Various types of optical microcavity
ultrasound sensors exist, with some capable of achieving
almost full-angle response52. Spherical sensors, especially
those considered point-like, exhibit a larger acceptance
angle. In contrast, microdisk or membrane sensors, have a
limited spatial angular response range, especially at higher
frequencies53. Furthermore, the detection distance of the
sensor is also a critical factor. In scenarios where the
sensor can be treated as a point, ultrasound sensing at far
distances may be weakened due to insufficient sensing
area and associated propagation losses. To minimize
ultrasound propagation loss, sensors are often placed in
proximity to acoustic sources. However, this near-field
detection approach comes with its drawbacks. When the
detection distance is comparable to the size of the sensor,
acoustic waves reaching different locations on the sensor
will undergo phase retardation, thereby influencing the
response. Compared with microdisks, the ring shape has a
clear advantage in near-field ultrasound detection because
the geometric simplicity minimizes the phase retarda-
tion53. While placing the microring cavity ultrasound

sensors in the acoustic far field provides a longer working
distance and a broader acceptance angle, detection in the
acoustic near field offers improved sensitivity and broader
bandwidth but at the expense of a reduction in the
acceptance angle54.

Optical microcavity ultrasound sensors
In this section, we present the working principles,

recent research progress, and applications of the above-
mentioned three types of microcavity ultrasound sensors.

Fabry-Perot cavity ultrasound sensors
The F-P cavities are the most fundamental type of

optical resonators and are widely used in numerous sen-
sors35,55–59. These cavities employ two highly reflective
mirrors to confine light between them, which can be
created either utilizing free space light propagation,
optical fibers, or chip-integrated structures. A majority of
ultrasound sensors based on F-P cavities are created at the
end of an optical fiber, with one mirror replaced with a
highly reflective film to improve both the optical Q factor
and the response to ultrasound60. Ultrasound incident on
the film causes a change in cavity length, thus modulating
the intensity of the reflected light. In 2013, an F-P cavity
using a multilayer graphene film as a reflector was used
for ultrasound sensing61. Using a thin film of only 100 nm
thick, this cavity has realized a NEP of down to
60 μPa Hz−1/2 at 10 kHz and a flat response in the fre-
quency range of 0.2 kHz–22 kHz. Xu et al. further reduced
the NEP to 14.5 μPa Hz−1/2 using a silver film with higher
reflectivity62. Figure 4a shows a schematic diagram of the
F-P cavity ultrasound sensor with a silver film. Ultrasound
sensors made from polymer films that have smaller
Young’s modulus have also been used to boost the
response to ultrasound. Ultrasound sensors made from
353ND63 and polytetrafluoroethylene (PTFE)64 films have
been used for ranging using the TOF method, with
resolutions of 5 mm and 3.7 mm respectively. Figure 4b
shows an ultrasound reconstruction of a Plexiglas block in
water using a PTFE diaphragm F-P cavity. A microbubble
has also been employed for ultrasound sensing as illu-
strated in Fig. 4c65. The microbubble was generated
photothermally on a microstructured optical fiber tip,
creating a flexible F-P cavity whose gas-water interface
was sensitive to ultrasonic waves. This microbubble was
capable of detecting weak ultrasounds emitted from red
blood cells irradiated by pulsed laser light. Figure 4d
shows the reconstructed cross-section photoacoustic
image of the blood-filled tubes using this microbubble
cavity. This approach can be achieved through sensitivity
enhancement of the microbubble as well as the ultra-
sound response over a certain bandwidth, as shown in
Fig. 4e, f. Additionally, owing to its spherical shape and
much smaller size than the acoustic wavelength, the
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10 μm diameter microbubble has a nearly omnidirectional
response, as illustrated in Fig. 4g. To improve the che-
mical stability of the film and simplify the fabrication
process, Fan et al. created an F-P cavity by splicing three
sections of cleaved standard single-mode fibers with an
off-core cross-section in the middle66. This multi-mode
dual-cavity F-P interferometer ultrasound sensor has
achieved a broadband ultrasound response from 5 kHz to
45.4MHz.
The above-mentioned F-P cavities utilized air as the

cavity medium, which is not ideal for encapsulation and is
less robust. To remedy this issue, Guggenheim et al.

proposed a plano-concave polymer microresonator
formed between two highly reflective mirrors in 2017
(Fig. 5a)52. With a high optical Q factor of > 105, it
exhibited a broadband response of 40MHz and a NEP of
1.6 mPa Hz−1/2. The sensor’s angular response was almost
full when integrated on the end face of a fiber (Fig. 5b),
rendering it useful as a versatile probe for various appli-
cations. Figure 5c, d show an optical-resolution photo-
acoustic microscopy image of an in vivo mouse ear and a
3D high-resolution pulse-echo ultrasound images of an
ex vivo porcine aorta sample, both obtained using this
ultrasound sensor on a fiber. Another great advantage of
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the sensor on the fiber is that it can penetrate deep into
the tissue for endoscopic imaging. Additionally, an all-
optical rotational B-mode pulse-echo ultrasound imaging
system was demonstrated by Colchester et al. using an
optical head at the distal end with a multi-walled carbon
nanotube and polydimethylsiloxane composite coating
(Fig. 5e)67. The coating produced axial ultrasound waves
via the photoacoustic effect of the light pulses while the
F-P cavity next to it can receive the tissue echoes, there-
fore proving a compact and minimally invasive probing.
Figure 5f shows rotational optical ultrasound images of an
ex vivo swine carotid artery obtained using this system.
The cladding-core structure of the fibers enables the

facile construction of sensing arrays using F-P cavities68.
In 2018, Ansari et al. has realized a forward-viewing
endoscopic probe using a 3.2 mm diameter fiber bundle
composed of 50,000 cores, as shown in Fig. 5g50. A 15 μm-
thick Parylene C film layer sandwiched by two 90%
reflective dielectric mirrors was deposited on the end face
of the fiber to form the F-P cavity. The large illuminated
field of view provided by the excitation laser from all
channels allows photoacoustic tomography imaging.
Meanwhile, the interrogation laser beam is scanned using
a lens and coupled into different fiber cores to read out
the ultrasound signals at different locations. The on-axis
lateral resolution of the probe was depth-dependent,
ranging from 45 to 170 μm for depths between 1mm and
7mm, and the vertical resolution was 31 μm over the
same depth range. Figure 5h shows the photoacoustic
image of a mouse abdominal skin microvasculature.
However, the F-P cavities in different channels may have
different resonance wavelengths, which poses a challenge
for optical readout. To address this issue, Yang et al.
demonstrated a photothermal tunable fiber optic ultra-
sound sensor array, where the resonant wavelength of
each cavity can be controlled by a laser69. Furthermore,
Ma et al. proposed a 4 × 16 fiber-optic array based on F-P
cavities, which enabled parallel sensing for imaging with a
volume rate of 10 Hz70. Moreover, this device’s imaging
performance was characterized by reconstructing
arbitrary-shaped ultrasound transducer images from the
multichannel signals without mechanical scanning.
In 2016, Preisser et al. demonstrated a novel all-

optical akinetic ultrasound sensor using a rigid fiber-
coupled F-P etalon with a transparent central open-
ing71, as shown in Fig. 6a. Unlike traditional F-P cavity-
based ultrasound sensors that rely on measuring the
displacement of the cavity mirror, this sensor measures
the change in refractive index within the fluid-filled
cavity. This unique design resulted in a broadband
resonance-free flat response in the 22.5 MHz range,
with a sensitivity of 450 μPa Hz−1/2. The sensor was
successfully employed in photoacoustic imaging of
biological samples, as shown in Fig. 6b. Besides being

integrated on optical fibers, F-P cavities can also be
integrated on a chip. Hornig et al. recently introduced a
monolithic buckled-dome cavity for ultrasound sensing,
as shown in Fig. 6c. This innovative design achieved an
impressive NEP as low as 30–100 μPa Hz−1/2 in the
frequency range below 5MHz72. Due to the sensitive
response of the buckled film to external forces, this
device has achieved thermal-noise-limited sensitivity.
Moreover, Ren et al. recently developed a technique
called dual-comb optomechanical spectroscopy (DCOS)
for high-sensitivity ultrasound sensing73. Figure 6d
illustrates the principle of DCOS, where a dual optical
comb is used as the excitation source and an opto-
mechanical coupling system serves as a sensitive pho-
toacoustic detector. Experimental results, displayed in
Fig. 6e, f, show a detection limit down to 15 parts per
trillion, expanding the range of applications for high-
sensitivity ultrasound sensors.

π-phase-shifted Bragg grating ultrasound sensors
The Bragg grating is a structure that has a periodic

refractive index. When the Bragg condition is satisfied,
there is a high reflectivity in a very small frequency range.
Application of an acoustic wave to a Bragg grating alters
its effective refractive index and period, thereby mod-
ifying the reflectivity of the Bragg grating74. However,
this approach relies on interference and does not take
advantage of optical resonance-enhanced optical read-
out. Furthermore, accurate detection of ultrasound
waves with wavelengths shorter than the length of the
grating is limited due to the non-uniformity of their
disturbance on the Bragg grating75. Consequently,
researchers introduced a variation of the π phase at the
center of the Bragg grating, creating π-phase-shifted
Bragg gratings. This phase jump causes the grating to
function as a highly reflective mirror, forming an F-P
cavity-like structure within the Bragg grating. Figure 7a
illustrates a schematic diagram of a π-BG ultrasound
sensor and its reflection spectrum76. The formation of
the resonator introduces a sharp intensity change in the
center of the reflection spectrum (denoted in the
reflectivity spectrum in Fig. 7a), significantly amplifying
the optical response to ultrasound while reducing the
sensing area. In 2011, a π-phase-shifted fiber Bragg
grating (π-FBG) with a reflectivity of over 90% was used
for ultrasound sensing, achieving a detection frequency
range of 10 MHz and a NEP of 440 Pa22. Monitoring the
shift in the resonance wavelengths was performed using a
continuous-wave laser, which was susceptible to laser
noise. To improve the sensitivity of the optical readout,
Riobó et al. employed a balanced Mach-Zendel inter-
ferometer to measure the phase change near the reso-
nance25. The adjustment of the interferometric optical
path enables the cancellation of the laser’s phase noise,
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resulting in an SNR that is 24 times higher than con-
ventional intensity measurement methods.
Due to their chip integration capability, π-BGs have

great potential for use in bio-imaging. In 2016, Wissmeyer
et al. demonstrated the use of a π-FBG in all-optical
photoacoustic microscopy, achieving optical resolution in
imaging a mouse ear and a zebrafish larva ex vivo77.
Benefitting from the high optical focusing capability and
the wide bandwidth ultrasound inspection capability, the
π-FBG has achieved a high lateral resolution of 2.2 μm
and an axial resolution of 10.9 μm. π-FBGs can also be
effectively combined with optical microscopy to achieve
multi-mode imaging. As shown in Fig. 7b, a π-FBG and an
acoustic resonant cavity can be compactly integrated,
enhancing the ultrasound response while allowing con-
venient integration with any optical microscope. Shnai-
derman et al. utilized this system to achieve in vivo sample
measurements in epi-illumination mode, combining

optical and optoacoustic microscopy (Fig. 7c)78. Similar to
F-P cavities on optical fibers, π-FBGs can also be used for
endoscopy. Wang et al. reported an all-optical intravas-
cular ultrasound (AO-IVUS) imaging system that utilized
picosecond laser pulse-pumped carbon composite for
ultrasound excitation and π-FBGs for ultrasound detec-
tion (Fig. 7d)79. This all-optical technique allowed for
ultrawide-bandwidth (147%) and high-resolution
(18.6 μm) IVUS imaging, surpassing the capabilities of
the conventional techniques.
The integration of π-BGs in chip-integrated waveguides,

known as π-phase-shifted waveguide Bragg gratings (π-
WBGs), offers additional advantages beyond traditional
optical fibers. In a study by Shnaiderman et al., the min-
iaturization of on-chip integration allowed for a sensing
area of 200 nm × 500 nm, with an array of eight sensors80.
Figure 7e shows the details of this silicon waveguide-
etalon detector (SWED). The sensor has achieved a
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sensitivity of 9 mPa Hz−1/2 and a bandwidth of up to
230MHz. Its remarkable performance enabled imaging of
features 50 times smaller than the detected ultrasound
wavelength, achieving ultrasound imaging at a resolution
comparable to optical microscopy. Another improvement
was made to the π-WBG by Hazan et al. in 2022, who
coated the grating surface with an elastic medium to

eliminate the parasitic effect of surface acoustic waves, as
shown in Fig. 7f and ref. 81. This silicon-photonics
acoustic detector demonstrated an NEP down to
2.2 mPa Hz−1/2 and a bandwidth above 200MHz, corre-
sponding to a theoretically achievable axial resolution
of ~ 6 μm. In vivo imaging using this detector was suc-
cessfully demonstrated for high-resolution optoacoustic
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tomography, providing imaging of the vasculature of a
mouse ear (Fig. 7g).

Whispering gallery mode microcavity ultrasound sensor
The concept of WGM was first studied in the context

of acoustic waves when Lord Reighley made the discovery
in the last century that he could hear two people whis-
pering even when they were standing very far away. His
study showed that this was due to the continuous
reflection along the curved wall with minimal propaga-
tion loss. The concept of WGM was later extended to
microwaves and optical waves. Analogous to sound
waves, light waves can be confined within a closed cir-
cular structure of high-refractive-index dielectric mate-
rial through total internal reflection. When the optical
path equals an integer multiple of the optical wavelength,
the resonance condition is satisfied82. The development
of microfabrication technologies in the past few decades
has allowed for the realization of WGM microcavities
with extremely high optical Q factors83–86. In addition to
their high optical Q factors, these microcavities also
possess advantages such as small mode volumes, and
adaptability to various material systems87–89 and shape.
As a result WGM optical microcavities have found
applications in diverse sensing fields34,37,39,90–107. Nota-
bly, significant progress has been made in ultrasound
sensing using various types of WGM microcavities in the
past decade, due to the exquisitely high sensing precision
they offer. In the following, we present the recent
advances in ultrasound sensing using WGM micro-
cavities with different geometries, specifically including
microrings, microspheres, microbubbles, microdisks, and
microtoroids. These types of microcavities have their
unique advantages in different applications. Microrings,
for example, can be easily integrated on the chip and
mass-produced, making them ideal for array sensing.
Additionally, microring ultrasound sensors exhibit a large
response bandwidth, which is critical for photoacoustic
imaging. However, the sensitivity of the microring
ultrasound sensors is limited due to deformation diffi-
culties, which can be addressed by using more deform-
able materials and structures. Another challenge lies in
obtaining ultrahigh optical Q factors of microrings which
is important to enhance the sensitivity. On the other
hand, the fabrication of ultrahigh Q microspheres and
microbubbles is quite straightforward. These micro-
cavities also possess almost full-angle spatial response.
Microbubbles, in particular, offer unique advantages of
detecting gas and liquid samples due to their hollow
structure108–110. Achieving a lower detection limit
requires improvements in both optical and mechanical Q
factors. Microdisks and microtoroids, with their sus-
pended structure, can significantly enhance mechanical Q
factors and have become an excellent platform for

optomechanics research111,112 and have been used for
improving ultrasound sensitivity.

Microring cavity ultrasound sensors
Microring is one of the most used types of WGM

microcavities for ultrasound sensing, due to their inte-
gration capability and the availability of various materials
options. Typically, microrings are directly sitting on the
substrate, making it difficult for an ultrasound to mod-
ulate the cavity length. To overcome this limitation,
polymer materials with low Young’s modulus, are often
chosen to increase strain and improve the response to
ultrasound, as shown in Fig. 8a. Some polymer materials
such as polymethyl methacrylate (PMMA)113,114 and SU-
8115, can be directly patterned using electron beam
lithography (EBL). However, the optical Q factors of these
microrings are typically limited to the range of 103–104.
To improve the optical Q factors and thus improve their
ultrasound sensitivity, Zhang et al. utilized a nanoim-
printing method with silicon molds to fabricate poly-
styrene (PS) microrings. Through optimization of the
nanoimprinting process, they were able to significantly
increase the Q factor of the polymer microrings to 105 116.
Using this high-Q PS microring cavity, they have achieved
a broadband response of 350MHz (Fig. 8b) with a NEP of
105 Pa in this frequency range. Such a large response
bandwidth allowed them to achieve sub-3 μm axial reso-
lution in photoacoustic imaging49. Additionally, they have
also explored the potential of an ultrasound sensing array
by creating a one-dimensional array consisting of four
microrings coupled with a single waveguide117.
In 2011, polymer microrings were already being used in

photoacoustic imaging, offering a lateral resolution of
5 μm and an axial resolution of 8 μm118. Using a polymer
microring on a microscope coverslip, Li et al. developed
an optically transparent ultrasound detector in 2014115.
This ultrasound detector offered high-sensitivity over a
wide receiving angle, with a bandwidth of 140MHz and
an estimated NEP of 6.8 Pa. The axial resolution was
verified to be 5.3 μm through photoacoustic imaging of a
carbon-black thin-film target. In 2015, they further
improved the system to achieve photoacoustic imaging of
mouse erythrocytes, with an axial resolution of 2.1 μm
(Fig. 8c)119. In 2019, Li et al. reported the development of
a disposable ultrasound-sensing chronic cranial window
featuring an integrated transparent nanophotonic ultra-
sound detector120. This detector was used to demonstrate
photoacoustic microscopy of the cortical vascular net-
work in live mice for 28 days, as shown in Fig. 8d. The
small size of the microring also makes it suitable for use as
a probe for endoscopy. Dong et al. successfully attached
optically transparent polymer microrings and prisms,
creating a compact structure where excitation and
detection are integrated121, as shown in Fig. 8e. By roating
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the probe, they were able to achieve 3D photoacoustic
imaging of the inner wall of a black plastic tube as well as
the hair, with the image shown in Fig. 8f.
Silicon microrings have also been widely utilized for

ultrasound sensing, due to the advancements in silicon
photonics technology over the past few decades. The
technology has enabled cost-effective and mass produc-
tion of silicon microring cavities on silicon-on-insulator
(SOI) platforms. To increase the response of the silicon
microring to ultrasound, optical micro-machined ultra-
sound sensors based on acoustic membranes have been
developed. This involves the microfabrication process of
etching away the silicon substrate underneath the silicon
microring122,123, resulting in an increase in mechanical
compliance, with the schematic and the optical

microscope image of the structure shown in Fig. 9a, b.
This suspended silicon membrane has successfully
achieved ultrasound pressure as low as 0.4 Pa122. How-
ever, the deformation of the coupling region can lead to a
nonlinear readout. To address this issue, Yang et al. have
proposed a solution by partially etching the silicon sub-
strate under the microring region, which maintains a
linear readout124. In 2021, Westerveld et al. fabricated a
thin silicon film over a silicon microring with a 15 nm air
gap between them, with the structure illustrated in Fig. 9c.
Ultrasound can induce the thin film to vibrate, which
changes a change in the air gap and thus affects the
intracavity optical field of the microring. Using a micror-
ing with a diameter of 20 μm, an NEP of 1.3mPa Hz−1/2

has been realized in the 3MHz–30MHz frequency range,
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which is dominated by acoustomechanical noise125. Fig-
ure 9d shows the results of the 3D photoacoustic imaging
of a phantom consisting of three overlaying polyamide
structures, obtained using this ultrasound sensor. They
have also designed a one-dimensional array of ten
microrings with uniformly distributed resonance wav-
lengths over a free spectral range of 17 nm. The feasibility
of the array detection was verified by measuring the delay

in the response of different microrings to the ultrasound.
Additionally, there are other microring-like structures
such as microknots that can be used for ultrasound
sensing126,127. In a recent study, Pan et al. demonstrated
photoacoustic tomography (PAT) with a chalcogenide-
based microring sensor array consisting 15 elements
(Fig. 9e). They further developed a parallel interrogation
technique using a digital optical frequency comb, as
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shown in Fig. 9f. They exploited the strong photo-
sensitivity effect of chalcogenide glass and illuminated
the microring sensors with pulsed light. By controlling
the illumination intensity and duration, they achieved
equidistant reconfiguration of the resonance frequencies
of the microring sensors. The reconstructed image of the
leaf is depicted in Fig. 9g, showing its potential applica-
tions of the ultrasound sensor array128.

Microsphere cavity ultrasound sensors
The microsphere is another commonly used device

geometry due to its easy fabrication process. Silica
microspheres, for example, can be fabricated by melting
the end of a fiber tip using a CO2 laser or a fusion splicer
and were extensively utilized for ultrasound sensing113,129.
In 2014, Chistiakova et al. performed ultrasound sensing
in water using an ultra-high Q silica microsphere130.
Through simulations and experimental verification, they
demonstrated that the microspheres can detect echo
signals from steel balls and water tanks. In 2020, Yang
et al demonstrated an optomechanical microdevice based
on Brillouin lasing in a microsphere cavity as a sensitive
unit for sensing external light, sound, and microwave
signals within the same platform131, with the structure
shown in Fig. 10a. They achieved a NEP of 267 μPa Hz−1/2,
corresponding to a minimum detectable force of
10 pN Hz−1/2. To enhance the sensitivity, they utilized the
mechanical vibration modes of the fiber which is coupled
to the suspended microsphere. Light is coupled into the
microcavity via a thin fiber taper, and the coupling
strength relies heavily on the distance between the fiber
taper and the microcavity. As ultrasound causes a more
significant displacement of the fiber taper compared to
the microsphere, measuring the change in the spacing
between the fiber taper and the microsphere becomes an
effective detection mechanism as shown in Fig. 10b. This
dissipative coupling mechanism was further explored
using microspheres by Meng et al.26, in which they
revealed that the response to ultrasound through dis-
sipative coupling was two orders of magnitude higher
than the dispersive coupling mechanism (Fig. 10c). In
order to create a more compact and environmentally
robust microsphere ultrasound sensor, Sun et al. encap-
sulated the microspheres and fibers using glue, thus
preventing contamination132, with its schematic illustra-
tion and the optical microscope image of the sensor after
the encapsulation shown in Fig. 10d,e. The sensor
achieved a NEP as low as 160 Pa at 20MHz, with ultra-
sound response extending up to 70MHz. They have
successfully applied this sensor in a 3D photoacoustic
imaging of leaf veins, with the image shown in Fig. 10f. In
2023, they further extended the application scenarios by
integrating microsphere cavities on optical fibers to form
microprobes133. Additionally, ultrasound sensing in

underwater environments has been demonstrated using
packaged microspheres134. In 2023, Tang et al. demon-
strated the use of microsphere ultrasound sensors for
real-time vibrational spectroscopy of single mesoscopic
particles. As shown in Fig. 10g, the mesoscopic particles
deposited on the microsphere generate ultrasound waves
when irradiated by a pulsed laser through the photo-
acoustic effect. The ultrasound waves propagate within
the microsphere, which can then excite its mechanical
modes. A continuous-wave probe laser is used to couple
light into the optical WGM to read out the mechanical
motion of the microsphere. The laser wavelength is
slightly detuned from the optical resonance so that the
mechanical motion can induce a change in the intracavity
optical field intensity, which is recorded by a photo-
detector. They also applied this technology for the bio-
mechanical fingerprinting of microbial cells with
different species and living states (Fig. 10h).

Microbubble cavity ultrasound sensors
Both microrings and microspheres are solid micro-

cavities that are more resistant to deformation compared
to hollow structures. Consequently, microbubble cavities
fabricated using hollow capillaries have been widely uti-
lized for ultrasound sensing. The capillary walls can be
crafted to be exceptionally thin to amplify the ultrasound
response. In 2017, Kim et al. developed a microbubble-
based ultrasound sensor (Fig. 11a) that has reached a NEP
of 215 mPa Hz−1/2 and 41mPa Hz−1/2 at 50 kHz and
800 kHz in air, respectively135. Microbubbles also employ
fiber tapers for light coupling and need to be encapsulated
in complex detection environments. Tu et al. used an
encapsulated microbubble to detect acoustic waves at low
frequencies in the 10 Hz to 100 kHz range, achieving a
NEP of 2.2 mPa Hz−1/2 136. Benefiting from their encap-
sulated structure, microbubble sensors maintain stable
performance under varying temperatures and static
pressures. A unique advantage of microbubbles over other
microcavities is that their walls can serve as ultrasound
transducers, while the hollow structure inside can act as a
sample container. In recent years, various studies137–139

have explored the use of nanoparticles injected into
microbubbles for photoacoustic detection of flowing
samples, as depicted in Fig. 11b. This approach allows
non-contact detection of target particles and can distin-
guish the optical absorption spectra between different
particles. Most recently in 2020, Pan et al. used a micro-
bubble cavity combined with a digital optical frequency
comb for ultrasound detection in air, which allows for
capturing the full mode spectrum on a microsecond
timescale. The working principle and experimental results
of this work are shown in Fig. 11c,d140. They have
achieved a NEP of 4.4 mPa Hz−1/2 in the air at a frequency
of 165 kHz and also accomplished high positioning
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precision by measuring the phase difference between two
microbubbles. Optical frequency combs were also used in
microrings on the chip for ultrasound measurement141.

Microdisk and microtoroid cavity ultrasound sensors
In addition to the three common types of WGM

microcavities mentioned above, microdisks have also been
utilized for ultrasound sensing. The microdisk structure
offers several advantages. First, advanced microfabrication
techniques allow for the creation of large sensing areas,

thus improving the sensitivity. Second, the design of
suspended microdisk structures augments mechanical
compliance to enhance ultrasound response, and decrease
mechanical damping rate γ, allowing for improved
thermal-noise-limited sensitivity (Eq. (3)). In 2019, Basiri-
Esfahani et al. demonstrated an ultrasound sensor using a
suspended spoked microdisk and reached the noise region
dominated by collisions of gas molecules41. The spoke
structure can make the microdisk more mechanically
compliant, reducing mechanical losses and making it

(see figure on previous page)
Fig. 10 Microsphere ultrasound sensors. a Schematic illustration of the mechanical modes of the cantilever-microsphere coupled structure,
excited by a temporally-modulated laser beam and a sound wave. b Stress field distribution of the microfiber and microcavity as acoustic waves
propagate to the coupling system. c Dispersive and dissipative acoustic responses at different acoustic pressures. d Schematic of microsphere cavity
for ultrasound detection. Inset: the cross-section electrical field distribution of a representative WGM mode of the microsphere. e The microscopic
picture of a silica microsphere cavity. f 3D photoacoustic imaging result of leaf veins. g Microresonator-based vibrational spectroscopy experimental
apparatus. Inset i: the enlarged view of vibrating particles on the optical microresonator. Inset ii: photoacoustic excitation of natural vibrations and
their acoustic coupling to the optical mode (from top to bottom). h Vibrational spectra of mixed particles. Reprint (a) from ref. 131; b, c from ref. 26;
(d–f) from ref. 132; g, h from ref. 151
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easier to reach the thermal-noise-limited regime. Figure 12a
shows the noise power spectrum (black) of the microdisk
around the mechanical mode, as well as its ultrasound
response at a single frequency (green curve). This
allowed NEPs of 8–300 μPa Hz−1/2 at a frequency range
between 1 kHz and 1MHz. They used both dissipative
and dispersive mechanisms to read out the different
mechanical vibration modes. This study demonstrated a
significant improvement in the sensitivity of ultrasound
sensors in the range dominated by thermal noise. In
2023, Yang et al. performed a more systematic study on
the thermal-noise-limited ultrasound sensitivity using
suspended microdisks, both theoretically and experi-
mentally42. The sensitivity was optimized by varying the
radius and thickness of the microdisk, as well as using a
trench structure around the disk. Sensitivities of micro-
disks with different thicknesses and radii are shown in
Fig. 12b. A peak sensitivity of 1.18 μPa Hz−1/2 has been

realized at 82.6 kHz, using a microdisk with a radius of
300 μm and a thickness of 2 μm. In the same year, Xing
et al. utilized an ultrahigh-quality calcium fluoride
resonator for ultrasound sensing, reaching a sensitivity of
9.4 μPa Hz−1/2 at 10 kHz142.
The optical Q factors of microdisks can be significantly

enhanced by converting the microdisk into a microtoroid.
This transformation involves a process of melting the
microdisk edges, thereby creating a microtoroid with an
incredibly smooth surface. Exceptionally high Q factors of
up to 108 have been achieved using this method83. To
further expand the frequency range of air-coupled ultra-
sound detection, Yang et al. then used microtoroids to
improve the megahertz-frequency ultrasound detec-
tion143, with their ultrasound measurement setup shown
in Fig. 12c. By employing a microtoroid with a very thin
silicon pedestal, an impressive mechanical Q factor of 700
was attained for the first-order flapping mode at
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2.56MHz. Figure 12d displays the pressure and force
sensitivities on the left and right axes, respectively. Near
the mechanical resonance, thermal-noise-limited sensi-
tivity has been achieved in a frequency range of 0.6 MHz.
Sensitivities of 46 μPa Hz−1/2-10 mPa Hz−1/2 have been
realized in the frequency range of 0.25–3.2MHz.

Performance comparison
Table 1 presents a summary of the key parameters for

three types of optical microcavity-based ultrasound sen-
sors, including the optical Q factor, center frequency,
bandwidth, NEPD or NEP, and acceptance angle. F-P
cavities can achieve an optical Q factor in the range of
about 104 to 105, by utilizing a highly reflective dielectric

layer. Similarly, π-BGs exhibit optical Q factors at a
comparable level, which can be further increased by
increasing the grating length. WGM microcavities, espe-
cially microspheres, microbubbles, and microtoroids, can
achieve higher optical Q factors, typically ranging from
107 to 108. For microrings, selecting materials with lower
optical absorption losses, such as silicon nitride, can
improve the optical Q factors144. Higher optical Q factors
enable the attainment of the thermal-noise-limited sen-
sitivity, leading to a lower NEP. Most of the sensors with
NEP at the micropascal level have exploited the
mechanical resonances of the structures to achieve the
thermal-noise-limited sensitivity, except for a few
millimeter-scale F-P cavities. However, it is important to

Table 1 Summary of the performances of optical ultrasound detection with different microcavities

Structure Q factor CF (MHz) BW at −6 dB (MHz) NEPD (mPa Hz−1/2) Acceptance angle

FP Diaphragm61 - 0.01 0.022 0.060 Around 80∘

F-P etalon71 - 1 22.5 0.450 < 20∘

Plano-concave microresonator52 >105 3.5 >20 2.1 180∘

Microbubble F-P cavity65 - 0.7 0.8 3.4 180∘

Buckled-dome microcavities72 ~ 103 - >15 0.03–0.1 120∘

π-BG FBG22 2 × 105 6.5 3 (NEP) 440 Pa -

FBG78 1.9 × 105 ~ 25 ~ 36 (NEP) 88 Pa 153∘

FBG79 - 27.5 40.4 (NEP) 108 Pa -

WBG80 ~ 105 - 230 9 148∘

WBG81 - - 200 2.2 -

WGM Microring49 ~ 105 - 350 (−3 dB) (NEP) 105 Pa -

Microring119 ~ 104 - 280 (NEP) 6.8 Pa 14∘

Microring122 ~ 104 0.76 0.14 (NEP) 0.4 Pa -

Microring125 ~ 104 - 27 1.3 120∘

Microring128 ~ 105 - 175 2.2 60∘

Microsphere130 9.5 × 107 40 5 (NEP) 0.535 Pa -

Microsphere131 108 0.0057 - 0.267 -

Microsphere132 ~ 105 20 70 (NEP) 100 Pa -

Microsphere26 ~ 106 0.14 - 1.29 -

Microsphere133 ~ 106 ~ 30 150 1.07 180∘

Microbubble135 3.5 × 107 0.8 0.2 41 -

Microbubble140 3 × 107 0.165 - 4.4 -

Microbubble136 5.2 × 105 0.001 0.1 2.2 105.5∘

Microdisk41 3.6 × 106 0.318 - 0.008–0.3 -

Microdisk42 3 × 106 0.0826 - 0.00118 -

Microdisk142 1.02 × 108 0.01 0.02 0.0094 150∘

Microtoroid143 ~ 107 2.56 1.13 0.046-10 -

CF center frequency, BW bandwidth

Cao et al. Light: Science & Applications          (2024) 13:159 Page 21 of 25



note that mechanical resonances can limit the detection
bandwidth, which can pose challenges in certain appli-
cations. For most imaging applications, bandwidth at the
megahertz level is necessary. Nevertheless, due to the
large propagation loss of high-frequency ultrasound
waves, only a limited number of sensors can detect
megahertz frequency ultrasound in water. Air-coupled
high-sensitivity ultrasound detection above 1 MHz fre-
quency was only realized using a microtoroid cavity, pri-
marily due to the higher absorption loss in air. Sensors
integrated into optical fibers generally have wider accep-
tance angles, making them suitable for receiving ultra-
sound signals from various directions. Additionally,
optical fibers themselves serve as excellent transmission
devices and can be easily connected to external devices
such as lasers. Sensors integrated onto a chip have slightly
narrower acceptance angles but offer advantages of low
cost, low power consumption, and mass production.
However, stand-alone sensors face the challenge of
ensuring stable packaging for practical applications
beyond laboratory settings. For 2D and 3D imaging, the
use of multiple sensor arrays working simultaneously can
reduce the need for mechanical moving parts and expe-
dite the imaging process. While 2D array multi-channel
parallel sensing has already been achieved with F-P cav-
ities on optical fibers, the development of array sensing is
still in its infancy, as only one-dimensional arrays of π-
BGs and WGM microcavities have been demonstrated
thus far.

Conclusion
Over the past few decades, optical ultrasound sensors

have emerged as a promising alternative to traditional
piezoelectric sensors, offering superior sensitivity and
bandwidth. Among these, optical microcavity ultrasound
sensors have particularly stood out due to their high
sensitivity, broad bandwidth, and miniaturization cap-
abilities, making them suitable for a wide range of appli-
cations in ultrasound imaging and photoacoustic sensing.
This review aims to explore the advancements in ultra-
sound sensing utilizing optical microcavities. We first
introduce the sensing principles and readout mechanisms,
highlighting the key parameters of microcavity ultrasound
sensors. Previous work has shown that thermal noise is
the fundamental limitation of NEP, and in this review, we
have discussed the parameters that influence the sensor
response and sensitivity. Furthermore, we provide a
comprehensive overview of the works on ultrasound
sensing using three different types of optical micro-
cavities, including F-P cavities, π-phase-shifted Bragg
gratings, and WGM microcavities.
Additionally, we compare the performance of these

microcavity ultrasound sensors. F-P cavity-based ultrasound
sensors demonstrate low NEPs but necessitate suspended

thin film structures and possess relatively large sensing areas.
In contrast, solid F-P cavities offer inferior sensitivities but
broader response bandwidth. Fiber-based F-P cavities allow
almost full spatial angle response and multi-channel parallel
sensing. π-BGs exhibit advantages such as broadband
response, large acceptance angle, multi-parameter sensing,
and ease of on-chip integration, yet sensitivity improvement
is necessary. WGM microcavities can achieve higher sensi-
tivities, due to the higher optical and mechanical Q factors
which allow thermal-noise-limited sensitivities to be
reached. However, WGM microcavities are not yet com-
mercially mature for several reasons. Firstly, for suspended
WGMmicrocavities (e.g., microspheres and microdisks), the
often-used fiber taper couplers are challenging to integrate.
Secondly, on-chip integrated WGM microcavities are less
demanding in terms of packaging, but their fabrication
process is highly intricate. Achieving high Q optical micro-
cavities requires the use of high-precision fabrication tech-
niques, such as electron-beam lithography and deep-
ultraviolet photolithography. However, these methods,
despite their effectiveness, are impractical for industrial
applications due to their prohibitive costs. Besides, utilizing
these microcavities necessitates extra intricate and costly
equipment for the measurement setup, limiting its applica-
tion scenarios. Expectantly, some researchers have made
attempts at portable measurement systems, such as a phone-
sized microresonator sensing system that can be equipped
on a drone145,146. Looking forward, advancements in both
science and technology are anticipated to enhance the per-
formance of optical microcavity ultrasound sensors, result-
ing in lower NEPs, broader bandwidths, and larger
acceptance angles. Moreover, their potential for parallel
sensing requires further exploration to enable high-speed
imaging147 and sensing applications. One approach is the
combination of multi-wavelength frequency comb sour-
ces148,149 with an ultrasound sensor array128. By harnessing
these advancements, optical microcavities hold promise to
revolutionize ultrasound sensing in numerous applications,
including photoacoustic imaging, non-destructive detection,
mineral exploration, underwater communications, etc.
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